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We present a computational study of spontaneous polarization and piezoelectricity in ScxAl1−xN
alloys in the compositional range from x = 0 to x = 0.5, obtained in the context of density functional
theory and the Berry-phase theory of electric polarization using large periodic supercells. We report
composition-dependent values of piezoelectric coefficients eij , piezoelectric moduli dij and elastic
constants Cij . The theoretical findings are complemented with experimental measurement of e33 for
a series of sputtered ScAlN films carried out with a piezoelectric resonator. The rapid increase with
Sc content of the piezoelectric response reported in previous studies is confirmed for the available
data. A detailed description of the full methodology required to calculate the piezoelectric properties
of ScAlN, with application to other complex alloys, is presented. In particular, we find that the
large amount of internal strain present in ScAlN and its intricate relation with electric polarization
make configurational sampling and the use of large supercells at different compositions necessary in
order to accurately derive the piezoelectric response of the material.

I. INTRODUCTION

ScAlN is an emerging semiconductor material with po-
tential applications in optics and electronics due to its
unique properties. It can be integrated with conventional
group-III nitrides, which are extremely important mate-
rials in the context of the lighting industry and other
emerging applications,1,2 in order to improve device per-
formance.3,4 In addition, AlN is CMOS-compatible and
elements based on ScAlN could potentially be used in
integrated circuits. The rapid enhancement of the piezo-
electric (PZ) response of ScAlN compared to bulk AlN
as the Sc fraction increases, together with its high Curie
temperature, makes it interesting for use in PZ devices.5

Since the first experimental evidence of this enhanced PZ
behavior by Akiyama et al. in 2009,5 a number of exper-
imental6–8 and theoretical7,9 studies have confirmed this
result, and the research in ScAlN for PZ applications has
gathered pace.

Reliable material parameters are critical in device
modeling and characterization. However, the accurate
experimental determination of PZ constants of ScAlN
is hindered by several factors, in particular the ability
to grow high-quality single-phase films using sputtering
techniques.10 Also, a full set of PZ coefficients eij and
PZ moduli dij for ScAlN is somewhat lacking from the
literature. In the case of spontaneous polarization, ex-
perimental measurement is simply too challenging.

In the present paper we present a consistent set of
composition-dependent PZ parameters for ScxAl1−xN in
the range from x = 0 to x = 0.5 derived from density
functional theory11,12 (DFT) calculations using large pe-

riodic supercells and the Berry-phase theory of polariza-
tion.13,14 We report PZ coefficients e15(x), e31(x) and
e33(x), PZ moduli d15(x), d31(x) and d33(x), and spon-
taneous polarization PSP(x). We compare these values
to experimental and theoretical data available from the
literature and add an own set of experimental values
of e33 obtained with a bulk acoustic wave (BAW) res-
onator setup and sputtered ScAlN films. In addition, we
provide a full set of composition-dependent elastic con-
stants C11(x), C12(x), C13(x), C33(x) and C44(x) fully
consistent with our methodology for PZ coefficients. We
thoroughly discuss the complete theoretical methodology
employed, its shortcomings and challenges. This detailed
description can now guide the calculation of PZ proper-
ties of other complex piezoelectric alloys.

The paper is structured as follows. Sec. II describes
the whole simulation procedure: Sec. II A deals with
the choice of supercell, and is complemented by the Ap-
pendix; Sec. II B introduces the calculation details, in-
cluding some practicalities related to the Berry-phase
formalism; Sec. II C relates the procedure needed to re-
trieve the hexagonal PZ tensor from the triclinic super-
cell calculations; Sec. II D gives the spontaneous polar-
ization results and details the strategy needed to com-
pute it; Sec. II E contains the main results of the paper,
the composition-dependent expressions for the PZ coeffi-
cients of ScAlN; Sec. II F deals with the transformation
between PZ coefficients eij and PZ moduli dij and gives
composition-dependent expressions for dij and the elas-
tic constants Cij . In Sec. III we explain the experimental
procedure carried out to determine the values of e33 for
a series of ScAlN films. Finally, in Sec. IV we discuss our
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results and present our conclusions.

II. SIMULATION

There are several practical complications associated
with the calculation of PZ constants and spontaneous
polarization of crystalline solids. The formal theoretical
framework to carry out this kind of calculation, in par-
ticular (but not limited to) in the context of ab initio
methods, is known as the modern –or Berry-phase– the-
ory of polarization, and was not developed until the early
1990s. A good account of this technique is available in
the seminal papers by Vanderbilt and King-Smith,13,14

the early review by Resta15 and, more pedagogically, in
a recent book chapter by Resta and Vanderbilt.16 The
Berry-phase approach has been successfully employed to
calculate polarization values in technologically important
materials, notably “traditional” nitrides (GaN, InN and
AlN).17 More recently, also studies of ScAlN have relied
on this technique to calculate the e33 PZ coefficient.9

The scope of the present work poses, however, additional
difficulties owing to the huge internal strain present in
ScAlN, which makes its structure largely deviate from
a true wurtzite crystal. Calculation of spontaneous po-
larization and all of the PZ constants of ScAlN through
the whole compositional regime requires a very careful
study of configurational (alloy) effects on the results.
In this section we describe this process in detail. Sec-
tion II A deals with the finite supercell representation of
the macroscopic alloy. In Sec. II B we provide the numer-
ical details of the DFT and Berry-phase calculations. We
discuss the implications of using triclinic supercells and
how to deal with them in Sec. II C. Finally, Secs. II D,
II E and II F present the computational results and dis-
cussion of spontaneous polarization, PZ coefficients and
PZ moduli, respectively.

A. Supercell choice: random and quasirandom
structures

In this study, the representation of realistic ScAlN al-
loys is carried out using periodic supercells containing
128 atoms, 64 cations (Sc or Al) and 64 N atoms, in a
construction of 4×4×2 wurtzite primitive unit cells (each
containing 4 atoms). The different compositional regimes
are achieved by replacing the corresponding number of Al
atoms by Sc atoms in the cation sublattice. Although the
supercells used are considerably large, the effect of con-
figurational disorder is observed to affect the results, as
will be shown later on. We therefore study different ways
to obtain the macroscopically-averaged values of sponta-
neous polarization and piezoelectric tensor through the
use of random and quasirandom supercells. To ensure
that finite-size effects related to periodicity are mini-
mized, randomly populated supercells are observed to
be required. We also explore the degree of applicabil-

ity of the special quasirandom structure (SQS) approach,
which consists in placing the different atoms in optimal
lattice sites such that the pair-correlation function (or
other properties) of the periodic system resembles that
of a random alloy as closely as possible.18 Different opti-
mizations methods for SQS cells have been studied, using
two series of SQSs: those used by Zhang et al.19 in pre-
vious work, that we refer to by “SQS#1”, and a new
series “SQS#2” at 12.5%, 25%, 37.5% and 50% Sc con-
tent, which were further optimized to yield zero pair-
correlation coefficients up to bigger pair distances for the
supercell size employed (128 atoms). We observe that
SQSs are not as well suited for the representation of av-
erage piezoelectric properties of ScAlN alloys as they are
for other properties, for instance elasticity. This trend
suggests a strong fluctuation of the local piezoelectric
properties of ScAlN at the microscopic scale, in line with
(but stronger than) the local effects predicted for the re-
lated nitride alloy InGaN.20 A more detailed analysis,
presented in the Appendix, reveals that there appears
to be no obvious correlation between supercell “random-
ness” (in the sense of calculated pair-correlation coeffi-
cients) and closeness of the supercell’s piezoelectric coef-
ficients to the configurational average.

B. Calculation details

Structural properties (lattice vectors and atomic po-
sitions) and self-consistent wave functions for the cho-
sen ScAlN supercells are obtained within the framework
of density functional theory (DFT)11,12 as implemented
in the vasp package21,22 in the context of the projec-
tor augmented wave (PAW) method.23,24 Together with
the three outermost valence electrons of Sc (4s23d), the
semicore 3s and 3p electronic states were also explicitly
included as valence states. For the exchange-correlation
part of the total energy, the gradient-corrected functional
of Perdew, Burke and Ernzerhof (PBE)25 was used. The
k -point sampling in the first Brillouin zone is done using
a 2 × 2 × 2 Monkhorst-Pack grid26 centered at Γ. The
plane wave cutoff was set to 600 eV. Such a high cutoff
is needed in order to correctly describe internal strain in
wurtzite nitrides,27–29 which has a large impact on piezo-
electric and spontaneous polarization.20 The calculation
of the electric polarization was carried out following the
directives of the modern (or Berry-phase) theory of po-
larization,13–15 using Martijn Marsman’s implementation
of this method as available in vasp.

To calculate the electric polarization a reference state
of well-defined polarization is needed.16 In the case of
wurtzite materials, a straight-forward reference is the
closely-related centrosymmetric (unstrained) zinc blende
(ZB) lattice. In the case of the in-plane components of
the polarization vector the unstrained WZ configuration
can also be used: the polarization components vanish
by symmetry along the c plane in unstrained wurtzite.
Fig. 1 depicts the workflow that leads to the calculation
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FIG. 1. Successive transformations needed in order to calculate spontaneous and piezoelectric polarization in a wurtzite-like
material.

of the PZ tensor through the different steps involved: i)
the ZB structure allows to establish a zero-polarization
reference; ii) the ideal WZ structure serves in order to
obtain the offset corrections to electronic and ionic po-
larizations (see next paragraph); iii) the evolution of the
polarization from ideal WZ to the WZ-like relaxed struc-
tures gives the value of the spontaneous polarization; iv)
the variation of the polarization upon small deformations
of the relaxed structures enables the calculation of the
piezoelectric tensor. In practice (the present case with
hexagonal supercells, for instance), the ideal WZ super-
cell might sometimes lead to straight-forward polariza-
tion offsets and the first step (ZB calculation) may be
skipped under those circumstances. Note that although
ScAlN alloys are macroscopically hexagonal, a finite-size
supercell will in general be triclinic, with lattice vectors
similar, but not equal, to those of the hexagonal super-
cell, as shown in Fig. 1.

A complication associated to the Berry-phase approach
stems from the choice of origin and the existence of the
quantum of polarization when computing the electronic
contribution to the electric polarization. The issue with
the choice of origin is also present when computing the
ionic part of the polarization.13 These lead to offsets in
the polarization values calculated directly, that must be
subtracted before the physically-meaningful result can be
obtained. However, if the origin to compute the polar-
ization vector is chosen carefully, one can obtain simple
expressions for the polarization offset as fractional mul-
tiples of the lattice vectors.30 Given the lattice vectors of
the ideal WZ supercells employed in this work:

a = 4 (a0, 0, 0) , b = 4

(
−a0

2
,

√
3a0

2
, 0

)
,

c = 2 (0, 0, c0) , (1)

when the origin for computing the supercell’s dipole mo-
ment is taken at (0, 0, 0), in the specific case of a pure
Al64N64 supercell, the calculation leads to the following
offsets for the electronic and ionic parts of the dipole mo-

ment vector:

pele
0 =

2e

3
a− 2e

3
b + 0c,

pion
0 =

640e

3
a +

704e

3
b + 252ec, (2)

where e is the elementary charge. The strain dependence
of the lattice vectors is inherited by the dipole moment
and it must be taken into account when correcting the
polarization results. Different (although similar) offsets
are obtained for the ScAlN supercells because of hav-
ing considered 11 valence electrons for Sc (including 8
semicore electrons). Otherwise, having considered only 3
valence electrons for Sc, the offsets would be identical.

C. Symmetry considerations

The use of supercells in theoretical calculations of al-
loyed compounds imposes a number of drawbacks. The
most immediate consequence is that macroscopic prop-
erties of a material which lacks full periodicity (e.g.
any disordered alloy) cannot be reproduced exactly with
finite-size periodic structures. To minimize this prob-
lem one must rely, on the one hand, on supercells which
are as large as computationally affordable and, on the
other hand, configurational sampling of different super-
cells with the same composition. This combined strategy
allows to both better represent the different microscopic
configurations found in the macroscopic alloy and to re-
move the effect of spurious periodicity effects introduced
by the supercell’s geometry. In the case of ScAlN alloys,
the large amount of internal strain does indeed lead to im-
portant deviations from hexagonal symmetry for relaxed
supercells. This is even true for supercells containing as
many as 128 atoms, as is presently the case.

Therefore, one is left dealing with supercells that have
in general triclinic symmetry, i.e. no symmetry at all,
and correspondingly complicated triclinic material ten-
sors. In the case of the piezoelectric tensor, this means
dealing with 18 independent piezoelectric coefficients eij
rather than the three independent WZ coefficients e15,
e31 and e33.31 The implications might be better under-
stood when these tensors are written down side by side
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in matrix representation. The supercell’s PZ tensor has
the form:

etric =

 e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

 , (3)

while the macroscopic alloy’s PZ tensor has the form:31

ehex =

 0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

 . (4)

Similarly, the corresponding supercell’s SP polarization
will not be directed exactly parallel to the hexagonal
[0001] direction (or c axis). Instead, it will point along
some direction close to the triclinic [001], since the tri-
clinic cell was obtained as a modification of an input
hexagonal one (Fig. 1).

In order to retrieve the macroscopic material tensor
from the supercell results, one can resort to the method
proposed by Moakher and Norris,32 whereby auxiliary
projectors P sym are used to “project” low symmetry ten-
sors (triclinic in the present case) onto a higher sym-
metry tensor (hexagonal here) such that the Euclidean
distance between the two tensors is minimized. In this
context, one can obtain the “closest” hexagonal tensor
to the original triclinic one. Moakher and Norris pre-
sented their method for analysis of elastic tensors (rank
4), which has already been used by Zhang et al.33 to study
elastic constants of ScAlN. It can however also be used
to study lower (or higher) rank tensors, such as the PZ
tensor (which has rank 3), provided that the appropriate
projector is available. We have obtained this projector
following Moakher and Norris’s recipe.32 One starts by
expressing the PZ tensor as an 18-dimensional vector,
with corresponding normalizing coefficients to preserve
the Euclidean norm:

e
tric ≡

(
e11, e12, e13,

√
2e14,

√
2e15,

√
2e16, e21, e22, e23,√

2e24,
√

2e25,
√

2e26, e31, e32, e33,
√

2e34,
√

2e35,√
2e36

)
. (5)

The hexagonal version of Eq. (5) would then be

e
hex ≡

(
0, 0, 0, 0,

√
2e15, 0, 0, 0, 0,

√
2e15, 0, 0, e31, e31,

e33, 0, 0, 0
)
, (6)

which can be expanded in the basis
{
Vhex

i

}
, that has the

following three components:

Vhex
1 =

1√
2

(0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) ,

Vhex
2 =

1√
2

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0) ,

Vhex
3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) . (7)

Following Moakher and Norris,32 P hex for the PZ tensor
is then:

P hex =

N∑
i,j

(
D−1

)
ij
Vhex

i × Vhex
j , (8)

with (D)ij = 〈Vhex
i ,Vhex

j 〉 being the elements of matrix
D, and where 〈, 〉 denotes inner product and × denotes
outer product. N is the size of the basis, N = 3 in this
case. The result is a sparse matrix of dimension 18× 18:

P hex =



04×4 · · · · · · 01×4

08×10
... 1

2

... 1
2

... · · · 04×4 · · ·

04×1
1
2

... 1
2

010×8

02×2 · · · · · · · · · 03×2

... 1
2

1
2

0
...

... 1
2

1
2

0
...

... 0 0 1
...

02×3 · · · · · · · · · 03×3



.

(9)

The hexagonal projection of etric is then

P hex
e

tric =
(

0, 0, 0, 0,
e15 + e24√

2
, 0, 0, 0, 0,

e15 + e24√
2

, 0, 0,

e31 + e32

2
,
e31 + e32

2
, e33, 0, 0, 0

)
. (10)

Note that in general, due to the arbitrariness of choosing
a specific set of Cartesian axes as reference frame for the
triclinic cell, the rotational degrees of freedom also need
to be taken into account when optimizing the projection.
This means that a general rotation of the triclinic PZ
tensor around the coordinate Cartesian axes (denoted by
R(θx, θy, θz)) needs to be performed before minimizing
the Euclidean distance between e

tric and its hexagonal
projection. The numerical optimization problem is then

∂

∂θi
‖R(θx, θy, θz)etric − P hexR(θx, θy, θz)etric‖2 = 0.

(11)

The reader is referred to Ref. 34 for further details.
In the case of the spontaneous polarization, it is

straightforward to see that the optimized hexagonal pro-
jection of the SP polarization vector after rotating the
triclinic value is simply minus its norm.35

D. Results: spontaneous polarization

The calculation of the spontaneous (SP) polarization is
done, as outlined in Sec. II B, by studying the evolution
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of the polarization vector as the structure is transformed
from ideal WZ (internal parameter set to u = 3

8 ) to the
WZ-like ScAlN equilibrium structure. The ionic part of
the polarization can be calculated in a straightforward
manner, once the offsets are known and subtracted (e.g.
Eq. (2)), as the difference between the ionic polariza-
tion of the relaxed structure and the reference ideal WZ
(which is zero):

P ion
i,SP = P ion

i,tric − P ion
i,idWZ, (12)

where tric and idWZ denote the triclinic and ideal WZ
supercell values, respectively, and i runs over each Carte-
sian component. For simplicity, we refrain from explicitly
including the offset corrections in the equations for the
ionic polarization, since they maintain their functional
dependence on the lattice vectors throughout the trans-
formation. This is true as long as the periodic replicas
chosen to calculate the polarization are always the same.
While the ionic polarization offset for a given structure
is fully determined by the choice of origin, in the case of
the electronic polarization this offset is also influenced by
the quantum of polarization.15,16 Since the Berry phase
is an angular variable, well-defined only modulo 2π, large
changes in its value corresponding to large changes in the
sample’s dipole moment may lead to ambiguous results.
The total dipole moment of the supercell scales linearly
with the number of primitive unit cells Ncells considered,
whereas the length of the lattice vectors scales only as

N
1/3
cells. Since the quantum of polarization ambiguity is re-

lated to lattice translations, this means that the “jumps”
in the electronic polarization components are more likely
to be observed as the supercell size grows larger. For our
128-atom supercells we observe this issue to be severe be-
cause the amount of internal strain is so large for ScAlN
alloys that the separate ionic and electronic contributions
change quickly (although the total polarization behaves
more smoothly).

Therefore, for large changes in polarization, such as
that expected from ideal WZ to WZ-like ScAlN, the evo-
lution of the electronic polarization must be carefully
monitored for jumps. In Fig. 2 we show the evolution of
the three Cartesian components of the SP polarization
vector for a Sc12Al52N64 supercell, where the transfor-
mation from clamped-ion to fully relaxed structure has
been characterized in 10 steps: for fixed lattice vectors,
the internal atomic positions are linearly scaled from the
clamped-ion configuration to the fully relaxed structure.
The first observation for this particular structure are the
jumps in the electronic polarization for Px and Pz. If we
had naively computed only the end points, as we did for
the ionic part in Eq. (12), the results of SP polarization
would be wrong (even the wrong sign) for Px and Pz and
only correct for Py, which presents no jumps in the elec-
tronic polarization part. Instead, by monitoring the full
transition from ideal WZ to triclinic we can reconstruct
the true evolution of the electronic polarization, as shown
in the bottom panel of Fig. 2 for the Pz component.

In this context, in order to find a fitting curve one
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FIG. 2. (Color online) Evolution of the spontaneous polar-
ization vector components during a smooth transformation
from the clamped-ion triclinic ScAlN supercell to the fully-
relaxed triclinic structure. Example Sc12Al52N64 configura-
tion shown.

needs to construct a generalization of a straight line that
takes jumps into account. In our implementation, this
curve is the following:

f(λ) =(mλ+ f0) step left(λ, λ1)

+ (mλ+ fNjumps
) step right(λ, λNjumps

)

+

Njumps−1∑
i=1

(mλ+ fi) pulse(λ, λi, λi+1), (13)

where λ is a parameter that characterizes the transfor-
mation, in Fig. 2 it would be the step out of 10. fi are
constant vertical shifts and m is the slope of the curve.
The different λi are the positions of the jumps, ideally
chosen to lie in between data points, and Njumps is the
total number of jumps: one for P ele

x , none for P ele
y , and

4 for P ele
z in Fig. 2. step left(λ, λi) is a step function,

equal to 1 to the left of λi and 0 elsewhere. Similarly,
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FIG. 3. (Color online) Variation with composition of the
spontaneous polarization of random and SQS ScAlN super-
cells. Average values and quadratic interpolation curve for
the random supercells are also given. The values for pure
AlN calculated at the HSE level of theory20 are given for ref-
erence.

step right(λ, λi) equals 1 to the right of λi and zero else-
where. Finally, pulse(λ, λi, λi+1) is zero everywhere ex-
cept between two adjacent jumps at λi and λi+1 where
it equals 1. The (green) dashed lines in Fig. 2 have been
generated fitting the fi and m to the different data sets
after identifying the position of the jumps, λi. The use-
fulness of Eq. (13) lies in the fact that it allows to adapt
to the irregular shape of the electronic polarization evo-
lution while maintaining the same slope m, irrespective
of this shape. Therefore fitting to f(λ) produces a single
parameter to characterize this evolution: m = ∂P ele/∂λ.
Thus, the reconstructed (blue) dotted line in the bottom
panel of Fig. 2 is simply mλ+ f0. The procedure above
allows us to systematically process the large amount of
data arising from configurational sampling at each com-
position with the aid of a computer.

Finally, the electronic part of the SP polarization is
calculated as follows:

P ele
i,SP = P ele

i,idWZ +
(
P ele
i,ci-tric − P ele

i,idWZ

)
+miδλ, (14)

where “ci-tric” refers to the clamped-ion triclinic cell, mi

is the m fitting parameter for each Cartesian component
and δλ is the increment in λ going from the clamped-ion

triclinic to the fully relaxed triclinic structures. In Fig. 2
and for all the structures we computed, δλ = 10. The
total SP polarization is simply computed as the sum of
Eq. (12) and Eq. (14):

Pi,SP = P ele
i,SP + P ion

i,SP. (15)

The results obtained for the different samples and com-
positions studied are shown in Fig. 3. A small scatter of
data can be observed, in particular as the amount of Sc,
and therefore the lattice distortion, increases. In the case
of SP polarization, the use of SQS instead of configura-
tional sampling of random structures might be justified.
Indeed, the SQS values are remarkably close to the av-
erages of random configurations for all compositions. A
quadratic fit to the random supercell data yields the fol-
lowing interpolation formula for the SP polarization of
ScxAl1−xN:

PSP(x) =− 0.089 (1− x)− 0.874x

+ 0.741x (1− x) C/m2. (16)

For consistency with the PZ tensor results from the next
section, the SQS results have been left out of the fit-
ting. The expression above has been given in the fash-
ion usually employed for ternary compounds, where it is
easy to identify the end values of the binaries and the
bowing parameter b,36 which gives the quadratic correc-
tion. In the case of ScAlN a large non-linearity with
composition of the SP polarization can be observed, with
b = 0.741 C/m2 in this case. Note, for comparison, that
the SP polarization bowing parameter of the traditional
nitride ternaries AlGaN, AlInN and InGaN is one order
of magnitude smaller.37,38 Equation (16) also allows to
identify the SP polarization of pure AlN (−0.089 C/m2)
and the (very large) extrapolated value of a hypothetical
pure wurtzite ScN (−0.874 C/m2). The latter is only an
artifact of the interpolation procedure and does not bear
connection to any real material, since WZ ScN is not
stable and high Sc-content ScAlN adopts a hexagonal-
layered configuration.9

It is worth mentioning that the jumps in the sponta-
neous polarization introduce a discontinuity in the evo-
lution of the polarization vector that affects the calcu-
lation of the PZ tensor through a shift in the reference
polarization of the unstrained system. The calculated
uncorrected polarization at a (small) finite strain P′[ε]
will belong to the same polarization branch as for ε = 0,
i.e. the branch at λ = 10 in the example of Fig. 2. If
there have been polarization jumps between the polar-
ization of the ideal structure and that of the unstrained
structure, this means that the reconstruction needed for
the spontaneous polarization also needs to be carried out
for the strained structure. The corrected dipole moment
of the unit cell p[ε] can be related to the uncorrected
value p′[ε] in the following way:

p[ε] = p′[ε] + (1 + ε) (pSP − p′[0]) , (17)
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where 1+ ε represents a strain transformation applied to
the dipole moment vectors. The correct polarization at ε
is then obtained by dividing Eq. (17) by the unit cell vol-
ume at strain ε. Note that if there have been no jumps,
pSP − p′[0] vanishes and the correction above becomes
trivial. One can choose to calculate the uncorrected PZ
tensor components e′ij for the given polarization branch
and carry out the corrections afterwards, which is ar-
guably a more straightforward route. The corrections
are as follows:

eij =


e′ij if i = j or j = i+ 3

e′ij − Pi,SP + P ′i [0] if i 6= j, j = 1, 2, 3

e′ij + 1
2 (Pk,SP + P ′k[0]) if j > 3, j 6= i+ 3

(18)

where k = 9− i− j. Incidentally, these corrections carry
a resemblance to the transformation from improper to
proper PZ coefficients39 that will be discussed in more
detail in Sec. IV.

E. Results: piezoelectric tensor

In order to calculate the components of the triclinic
PZ tensor of the different supercells, we monitor the evo-
lution of the three Cartesian components of the polar-
ization vector Pi as small strains εj = ±0.2 % are ap-
plied.40 A finite difference calculation then leads to the
18 independent etric

ij . Next, the tensor directly obtained
in this way is rotated so as to maximize its hexagonal
projection using Eq. (11) and the procedure described in
Ref. 34. This allows an optimum hexagonal “alignment”
of the tensor. The results for the different configura-
tions and Sc contents are shown in Fig. 4. For clarity of
interpretation, the panels in the figure are arranged in
the same fashion as the PZ tensor when represented in
matrix form, Eq. (3). The vertical scale has been kept
fixed for all the PZ coefficients except for e33 to enable
a direct simultaneous comparison of the magnitude of
variation for all the PZ constants. The most immediate
observation that can be made is with regards to the large
data scattering for different configurations with the same
nominal composition. The largest scatter occurs for the
hexagonal PZ coefficients e15, e31 and e33, but also for
e16, e21 and e22. Although the latter might seem like an
unexpected result, we have previously shown that these
components in a wurtzite crystal only vanish as an av-
eraging macroscopic effect, cf. Eq. (14) of Ref. 20. This
scatter of results is directly related to the large amount
of internal strain that distorts the lattice locally in very
different ways for different configurations.

The hexagonal projection of the triclinic PZ tensors in
Fig. 4 using Eq. (11) leads to the hexagonal PZ constants
of Fig. 5. The composition-dependent expressions from
a fit to the random configuration data, given in C/m2,

are:

ehex
15 (x) = −0.367 (1− x)− 0.435x+ 0.417x (1− x),

ehex
31 (x) = −0.424 (1− x)− 0.286x− 0.615x (1− x),

ehex
33 (x) = 1.449 (1− x) + 8.182x− 5.912x (1− x).

(19)

The PBE functional, similar to other local and semilocal
DFT functionals, has a number of shortcomings. Us-
ing a more expensive approach, for instance a hybrid-
functional, better accuracy can be achieved. Running
hybrid-functional calculations for the 128-atom super-
cells is impractical in the present case due to the in-
creased computational cost. A possible approach is to
correct the end points for the AlN binary and then fol-
low the same evolution with composition for the alloy
as predicted with PBE. Correcting the AlN end values
to the HSE hybrid-functional results from Ref. 20, gives
significant changes only for e31:

ẽhex
15 (x) = −0.39 (1− x)− 0.458x+ 0.417x (1− x),

ẽhex
31 (x) = −0.63 (1− x)− 0.492x− 0.615x (1− x),

ẽhex
33 (x) = 1.46 (1− x) + 8.193x− 5.912x (1− x). (20)

We will denote HSE-corrected (cHSE) results with a tilde
throughout the rest of the manuscript, meaning in each
case that the expressions have been adjusted so that the
values for pure AlN match the HSE ones, taken from
Refs. 28 and 20 as appropriate. As can be readily seen
from the data in Figs. 4 and 5, one cannot rely on the
result of SQS calculations alone in order to establish the
macroscopic average of the PZ coefficients of ScAlN. De-
spite being computationally expensive, configurational
averaging for random supercells becomes necessary for
accurately computing the full PZ tensor (either the tri-
clinic tensor or its hexagonal projection).

Overall, our results indicate a very fast evolution with
composition of e33 but a smoother behavior for e15 and
e31. A more detailed discussion of these simulation re-
sults in the context of previous theoretical studies and
available experimental data, including some own mea-
surements from Sec. III, will be presented in Sec. IV.

F. Elastic constants and piezoelectric moduli

So far we have discussed the values of the piezoelec-
tric coefficients eij which relate electric polarization and
strain εj :

Pi =

6∑
j=1

eijεj . (21)

However, it is not uncommon to describe the piezoelectric
response of a material in terms of its piezoelectric moduli
dij , which give the evolution of the electric polarization
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FIG. 4. (Color online) All the components of the triclinic piezoelectric tensor calculated for random and SQS supercells for
all the configurations and compositions studied. The quadratic interpolation curves have been fitted to the average random
results. The layout follows the appearance of the PZ tensor in matrix representation, Eq. (3).

vector as a function of stress σj :

Pi =

6∑
j=1

dijσj . (22)

The hexagonal tensor of piezoelectric moduli has the
same form as that of the piezoelectric constants given
in Eq. (4). For completeness and to be able to com-
pare to experimental data on the piezoelectric constants
of ScAlN alloys, which is most often given in the litera-
ture in terms of the dij , we compute them too. In order
to do so, the elastic constants Cij of ScAlN need to be
computed, which can be readily done from the same set
of calculations that allow to extract the PZ coefficients.
Then, the relation between eij and dij can be obtained
straightforwardly from the strain-stress relation,

σi =

6∑
j=1

Cijεj , (23)

in such a way that the relation between the different PZ
coefficients is simply:

eij =

6∑
k=1

dikCkj , dij =

6∑
k=1

eik
(
C−1

)
kj
. (24)

Given the symmetry of the hexagonal stiffness tensor,
the independent non-vanishing hexagonal PZ coefficients
and PZ moduli can be expressed as follows:

e15 = d15C44, e31 = d31(C11 + C12) + d33C13,

e33 = 2d31C13 + d33C33, (25)

for the eij , and

d15 =
e15

C44
, d31 =

e31C33 − e33C13

(C11 + C12)C33 − 2C13
2 ,

d33 =
e33(C11 + C12)− 2e31C13

(C11 + C12)C33 − 2C13
2 , (26)

for the dij . The evolution with composition of the Cij for
ScAlN from our simulations is depicted in Fig. 6, where
less scatter of data can be observed as compared to the
PZ coefficient results. Incidentally, the SQS supercells
are also observed to be more suitable for calculating elas-
tic properties of ScAlN than PZ coefficients: the average
values for random supercells are very close to the SQS
values. The Cij have been obtained following the same
procedure outlined in Sec. II C with an optimized rota-
tion of the stiffness tensor followed by a hexagonal projec-
tion.32,34 The projector for the hexagonal stiffness tensor
has been previously obtained by Tasnádi et al.41
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FIG. 5. (Color online) Hexagonal projected components of
the triclinic PZ tensor of ScAlN, obtained as explained in
detail throughout the text.

The fitted quadratic expressions for the composition-
dependent hexagonal elastic constants of ScxAl1−xN are:

Chex
11 (x) = 378.8 (1− x) + 263.9x− 210.3x (1− x),

Chex
12 (x) = 128.9 (1− x) + 185.1x− 61.9x (1− x),

Chex
13 (x) = 96.1 (1− x) + 121.5x+ 78.9x (1− x),

Chex
33 (x) = 357.5 (1− x)− 51.3x− 101.4x (1− x),

Chex
44 (x) = 112.4 (1− x) + 159.0x− 137.3x (1− x),

(27)

given in GPa. Underbinding (too long lattice constants)
and the correspondingly low elastic constants are well-
known shortcomings of generalized-gradient approxima-
tions to DFT, including the PBE functional. For this
reason, the correction of the Cij to give the right num-
bers for AlN becomes more critical than in the case of
the PZ coefficients. The HSE values for AlN28 give much
better agreement with experiment42 than the PBE val-
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FIG. 6. (Color online) Composition-dependent hexagonal
projected components of the stiffness tensor of ScAlN.

ues. The corrected constants (in GPa) are:

C̃hex
11 (x) = 410.2 (1− x) + 295.3x− 210.3x (1− x),

C̃hex
12 (x) = 142.4 (1− x) + 198.6x− 61.9x (1− x),

C̃hex
13 (x) = 110.1 (1− x) + 135.5x+ 78.9x (1− x),

C̃hex
33 (x) = 385.0 (1− x)− 23.8x− 101.4x (1− x),

C̃hex
44 (x) = 122.9 (1− x) + 169.5x− 137.3x (1− x).

(28)

Combining Eq. (27) with the expressions in Eq. (19), and
Eq. (28) with Eq. (20), for the PBE and HSE-corrected
values, respectively, following the relation given by
Eq. (26), leads to the following composition-dependent
expressions for dhex

ij (x) (given in pC/N):

dhex
15 (x) = −3.27 + 0.454x+ 0.869x2 − 0.847x3,

dhex
31 (x) = −1.784− 23.0x+ 149.9x2 − 381x3,

dhex
33 (x) = 5.01 + 67.3x− 458x2 + 1176x3, (29)

for the direct PBE results and

d̃hex
15 (x) = −3.17 + 0.487x+ 0.660x2 − 0.746x3,

d̃hex
31 (x) = −2.14− 15.09x+ 78.8x2 − 229x3,

d̃hex
33 (x) = 5.02 + 42.3x− 238x2 + 704x3, (30)

for the HSE-corrected values. The expressions have been
obtained as the best third-order fit to the full expressions
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calculated from Eq. (26) (taking Eqs. (19) and (27), and
Eqs. (20) and (28) as input) with the constraint that the
values for AlN be reproduced exactly. A second-order fit
was not enough to correctly describe the evolution with
composition of the dij . Comparison of these results with
available literature values will be done in Sec. IV.

III. EXPERIMENTAL MEASUREMENT

Given the more complex setup needed to measure e31

and, particularly e15, we carried out measurements of e33

at three different compositions using an acoustic wave
resonator, in order to be able to partially compare and
validate the results of the simulation.

Magnetron sputtering was utilized to fabricate the
wurtzite-like ScAlN thin film bulk acoustic wave (BAW)
structures.44 The films in the study were co-sputtered
in a von Ardenne CS730S cluster sputtering tool.45 The
ScAl composite sputtering target used consisted of an
Al (99.999%) body equipped with Sc (99.9%) pieces.
The number of Sc pellets on the target determines the
chemical composition of the grown films, which was ana-
lyzed using time-of-flight elastic recoil detection analysis
(ToF-ERDA).46–48 The BAW resonator structure used
to extract the e33 piezoelectric coefficient is made up of
a ScAlN plate between metal electrodes which was de-
posited onto an acoustic Bragg reflector consisting of two
pairs of SiO2/W layers with a quarter wavelength thick-
ness. A voltage source is connected across the thickness
dimension of the piezolayer, which we denote z. Wafer
level S-parameter measurements were performed with a
Hewlett-Packard 8720D vector network analyzer.

The one-dimensional description of the resonator is as
follows. The wave equation for the mechanical displace-
ment u along z is

∂2u

∂t2
= vD

∂2u

∂z2
, (31)

where vD is the sound phase velocity under the prevailing
conditions. If the effective stiffness of the material is CD

and the mass density is ρ, the velocity is given by

vD =

√
cD

ρ
. (32)

We search an analytic harmonic solution of the equation

∂2u

∂z2
= −k2 u, (33)

in a multilayer structure in the form

ui = Aie
−ikiz +Bie

ikiz, (34)

where ki = ω/vi is the wave number in layer i. The
amplitude coefficients Ai and Bi are determined from
the boundary conditions establishing that the stress and

displacement are continuous across each interface. The
electric field in the piezolayer is

E =
Ji

iωεi
− hi

∂u

∂z
, (35)

where hi is the piezoelectric coefficient, εi the electrical
permittivity and Ji the current density through layer i
at angular frequency ω. The voltage U of the device is
obtained by integrating the field E over the thickness,
and the current I by integrating J over the electrode
area. Finally, the impedance is calculated as Z = U/I.
From the measured impedance the following quantities
are calculated: i) the parallel capacitance C0, which is
used to calculate the permittivity, ii) the phase

ϕ = arctan

(
Im{Z}
Re{Z}

)
, (36)

and iii) the quality factor

Q =
ω

2

∣∣∣∣dϕdω

∣∣∣∣ . (37)

The resonance frequencies fs and fp are then determined
as the frequencies of the maximum values of Q. The
electromechanical coupling coefficient is given by

keff =

√
1−

(
fs
fp

)2

. (38)

Finally, the piezoelectric coefficient e33 = εTh is chosen
so that the measured and calculated keff are equal. The
values of e33 together with the different material param-
eters obtained for the three ScAlN samples studied are
given in Table I.

IV. DISCUSSION, SUMMARY AND
CONCLUSIONS

Before comparing results from simulation and experi-
ment it is worth making the distinction between proper
and improper PZ coefficients. A more detailed discussion
is available from the paper by Vanderbilt39 and references
therein. The “improper” coefficients, that we have cal-
culated in Sec. II E, link the electric polarization vector
and strain through Eq. (21), and can be alternatively
expressed as

eij =
∂Pi

∂εj
. (39)

The “proper” PZ coefficient, on the other hand, links
the adiabatic change in current density J in response to
a slow deformation ε̇j = dεj/dt:

39

ep
ij =

∂Ji
∂ε̇j

, (40)
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TABLE I. Parameters involved in the experimental determination of e33 used in this work. The density values are calculated
from the lattice constants measured by Matloub et al.43 and the atomic masses of Sc, Al and N. Note: the elastic constant C33

is chosen so that the calculated resonance frequency is close to the measured value.

Measured Calculated Measured Calculated Measured Calculated

Sample GB177E13 HCScAlN J07R10 EHC D04 R09

Sc content (% of cations) 0% 14% 26%

Thickness (nm) 1270 1070 1010

Relative permittivity ε 9.37 9.37 10.68 10.68 13.06 13.06

e33 (C/m2) 1.46 1.81 2.333

Density (g/cm3) 3.512 3.530 3.560

C33 (GPa) 379.9 340 300

fs (MHz) 1969.5 1942.2 1886.6 1856.2 1753.2 1700.7

fp (MHz) 2023.3 1996.0 1966.4 1934.8 1872.9 1816.8

keff 0.229 0.2306 0.282 0.2822 0.352 0.3517

C0 (pF) 5.302 5.302 1.862 1.86 1.869 1.87

where Ji indicates current density along direction i (in
contrast to Eq. (35), where i denotes layer and the cur-
rent density is assumed to flow along the polar axis). The
definitions in Eqs. (39) and (40) lead in general to dif-
ferent PZ coefficients. The transformation between im-
proper and proper PZ coefficients for the three indepen-
dent wurtzite eij is as follows:49

ep
15 = e15 −

1

2
P3,SP,

ep
31 = e31 + P3,SP,

ep
33 = e33. (41)

The improper coefficient is the relevant one when calcu-
lating polarization charges, for instance interfacial charge
accumulation at quantum well interfaces.50 The proper
coefficient, on the other hand, is the quantity that should
be compared to experiments where PZ coefficients are
measured in terms of flowing currents.39 For systems
with small spontaneous polarization the corrections can
be negligible, but in view of the fact that the sponta-
neous polarization of ScAlN becomes of the same order
of magnitude as the PZ coefficients for large Sc fraction,
the corrections in Eq. (41) become important. There-
fore, we report the different proper coefficients here, as
obtained from applying the corrections of Eq. (41) to the
different expressions of the previous sections. The proper
PZ coefficients eij directly obtained from the PBE results
are:

ep
15(x) = −0.323 (1− x) + 0.002x+ 0.047x (1− x),

ep
31(x) = −0.513 (1− x)− 1.160x+ 0.126x (1− x),

ep
33(x) = e33(x), (42)

where e33(x) is taken from Eq. (19). For the HSE-
corrected values, the proper eij become:

ẽp
15(x) = −0.346 (1− x)− 0.021x+ 0.047x (1− x),

ẽp
31(x) = −0.719 (1− x)− 1.366x+ 0.126x (1− x),

ẽp
33(x) = ẽ33(x). (43)

where ẽ33(x) is taken from Eq. (20). The proper PZ
moduli from PBE and HSE-corrected calculations are

dp
15(x) = −2.87 + 0.862x+ 5.35x2 − 2.89x3,

dp
31(x) = −1.979− 24.3x+ 156.9x2 − 403x3,

dp
33(x) = 5.12 + 70.8x− 485x2 + 1243x3, (44)

and

d̃p
15(x) = −2.81 + 0.846x+ 4.63x2 − 2.40x3,

d̃p
31(x) = −2.32− 15.90x+ 82.0x2 − 243x3,

d̃p
33(x) = 5.12 + 44.4x− 253x2 + 745x3, (45)

respectively. Note that unlike for the PZ coefficient, the
proper PZ modulus dp

33 is not equal to the improper one
because both ep

33 and ep
31 are involved in its determination

[cf. Eq. (26)].
In Fig. 7 we show a comparison of the present results

and available experimental and simulation data from the
literature. Most of the available data is for the dij , rather
than the eij . In particular, there is lack of published
data regarding the shear PZ coefficient e15 and shear PZ
modulus d15, for which this work seems to be the first
one to report values. In addition, although e31 could be
estimated from available values of PZ moduli and elastic
constants, there does not seem to be any explicit reports
for this coefficient either. Matloub et al.43 have reported
values for the “effective transverse” e31,f which, attend-
ing to the definition provided by the authors in previous
work,51 should relate to e31 as e31 = e31,f+

C13e33
C33

. There-
fore we use our calculated values of C13, C33 and e33 to



12

-0.4

-0.3

-0.2

-0.1
e
1
5
(C

/m
2
)

-1.2

-1

-0.8

-0.6

-0.4

e
3
1
(C

/m
2
)

1.6

2.4

3.2

4

e
3
3
(C

/m
2
)

-3

-2

-1

d
1
5
(p
C
/N

)

-30

-20

-10

0

d
3
1
(C

/m
2
)

0

20

40

60

80

0 10 20 30 40 50

d
3
3
(C

/m
2
)

Sc content (% of cations)

This work (PBE)
This work (cHSE)

This work (pr., PBE)
This work (pr., cHSE)

This work (PBE)
This work (cHSE)

This work (pr., PBE)
This work (pr., cHSE)
Matloub et al.∗ (exp.)

This work (PBE)
This work (cHSE)
This work (exp.)
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FIG. 7. (Color online) Comparison of the present results
(“pr.” stands for “proper”) and available literature data,
taken from: Matloub et al.43 (data modified for comparison
[see text], experiment); Tasnádi et al.9 (simulation); Umeda
et al.7 (simulation & experiment); Mayrhofer et al.8 (experi-
ment); Akiyama et al. a)6 (experiment); and Akiyama et al.
b)5 (experiment). See text for a discussion.

be able to compare to their experimental results. Unfor-
tunately, the relation between electric polarization and
stress has a much more extreme dependence on compo-
sition for ScAlN alloys due to the lattice softening along
the c axis as the Sc fraction increases,9,33 if compared to
the relation between polarization and strain. This trans-
lates into the very rapid variation with composition of
d31 and d33 beyond x ≈ 30%. It is then more difficult

to disentangle the contributions to electric polarization
arising from a) crystal deformation and b) lattice soften-
ing when looking at the PZ moduli. This also means that
any uncertainty relating to the knowledge of the elastic
constants has a strong impact on the derivation of the dij
values. In contrast, the relation between crystal deforma-
tion and polarization is more transparent when looking
at the PZ coefficients eij , which preserve a smoother be-
havior throughout the full compositional regime studied.

Overall, the agreement with previous simulations is dif-
ficult to establish due to the fact that both available stud-
ies, by Tasnádi et al.9 and Umeda et al.7 did not consider
configurational sampling, which we have shown to affect
the results. The agreement is good between our calcu-
lations and Tasnádi’s results of e33, obtained using 128-
atom SQS supercells, for moderate and low Sc content.
For higher Sc content the spread of e33 values increases,
meaning that a single SQS supercell per composition is
not enough to capture the effects of configurational dis-
order. The agreement between the simulation results of
Umeda et al.7 and the present work is not too bad for
d31 but less good for d33. Umeda used small 32-atom su-
percells for which the spurious effects of periodicity and
artificial alloy order (the structures were generated max-
imizing the inter-Sc distances) might have influenced the
results.

With regards to agreement with experiment, the only
experimental values for eij reported so far seem to be
the e33 values of the present study, which our simulations
slightly underestimate. The e31 values from Matloub et
al.,43 extracted from their e31,f as outlined previously,
show reasonable agreement with our calculations. Re-
ported values for d31 and especially d33 are more abun-
dant. Our results seem to be in good agreement with
d31 and in reasonably good agreement for d33 over more
or less the full compositional range, especially in the
case of the HSE-corrected results. Note that the dips of
Akiyama’s values5 at around 37% Sc content and beyond
45% Sc content, as well as Umeda’s values7 dip beyond
40% Sc content, are likely due to deteriorating crystal
quality.5,10 Note that in every case discussed above, it
should be the proper (“pr.” on the graph) PZ coefficient
to be compared to the experimental value.

The largest sources of error in experimental measure-
ment are i) those intrinsic to the experimental setup and
ii) those due to the lack of knowledge of the ScAlN alloy
properties, in particular elastic properties (which are usu-
ally measured simultaneously with the PZ coefficients)
and the amount of incorporated Sc. Due to the discussed
lattice softening that takes over rapidly as the Sc con-
tent increases, the lack of accurately-determined elastic
properties is likely the largest source of error in experi-
mental measurements. A further source of experimental
uncertainty is related to the microscopic structure of the
alloy, including the possible effect of clustering, and how
it affects the PZ properties of the material. In partic-
ular, Akiyama et al. showed that the alloy microstruc-
ture, which is influenced by Sc content and growth tem-
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perature, affects the PZ performance of ScAlN films.52

Zukauskaite et al. have also shown that formation of
Al-rich and Sc-rich domains can occur under unfavor-
able growth conditions at high temperature and high Sc
concentrations but should not happen for films grown
at lower temperature and lower Sc contents.53 Therefore,
clustering might be directly or indirectly linked to deteri-
orating PZ properties of ScAlN for low crystalline quality
samples (see for instance the dip of Akiyama’s results for
d33 in Fig. 7) but, otherwise, the assumption of a random
alloy for the present simulations should be representative
of high crystalline quality experimental samples. The ef-
fect of clustering on the simulation results could be an
interesting topic to be explored in future studies.

From the simulation, errors arise from two main fronts:
i) the effect of finite-size supercells and configurational
disorder which we have thoroughly shown in Sec. II to
have an impact on the results; ii) the inaccuracy intro-
duced by the choice of DFT functional. We argue that,
in order to address the first issue, configurational sam-
pling is required, as evidenced by the large spread of data
displayed in Fig. 4. Even if the number of configura-
tions used (9 random supercells per composition) is not
enough to accurately determine the PZ tensor at a single
composition, the combined effect of all the available data
points through the whole compositional regime leads to a
much improved fitting of interpolation formulas. This is
evidenced by the fact that the fitting curves for the non-
hexagonal components of the triclinic PZ tensor are close
to zero, even for those with larger spread (e16, e21 and
e22). We could have attempted to compute more values
for each composition, however from a practical point of
view such a study becomes computationally too expen-
sive.54 The second issue is more difficult to address. A
good benchmark for the performance of DFT function-
als for semiconductors is the HSE hybrid functional,55 as
already discussed. While it performs considerably better
than LDA and GGA functionals with respect to predic-
tion of elastic and structural properties,56 it has been pre-
viously shown that with regards to calculation of sponta-
neous and piezoelectric polarization the main differences
with other functionals lie in the description and impact
of internal strain on the results.20 Given the large inter-
nal strain present in ScAlN, this is probably the main
source of error in our simulation results. To account for
this, given the computational limitations to carrying out
hybrid-functional calculations for large systems, we have
corrected the expressions for the PZ coefficients so that
the AlN end points are described according to the HSE
results. The goodness of this approximation relies on
how well the trends with composition are described by
the PBE functional.

Taking all these concerns into consideration, we rec-
ommend the use of Eqs. (16), (20), (28) and (30) for the
composition-dependent values of the spontaneous polar-
ization, the piezoelectric coefficients eij , the elastic con-
stants Cij and the piezoelectric moduli dij , respectively,
of ScAlN alloys. For the “proper” PZ coefficients ep

ij and

moduli dp
ij we recommend Eqs. (43) and (45), respec-

tively.
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Appendix: Relation between randomness and PZ
coefficient

Given the observed result that SQS cells do not repro-
duce the average piezoelectric constants of ScAlN as well
as they do reproduce other properties, we have attempted
to study whether there is any correlation between super-
cell randomness and the calculated piezoelectric coeffi-
cients. The results of this study are presented in Fig. 8.
The pair-correlation coefficients of an ideally random al-
loy are minimal in absolute value for all nearest-neighbor
shells, and so SQS supercells are generated by placing the
different atoms so that these coefficients are minimized.18

The lack of any obvious trend between the “randomness”
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FIG. 8. (Color online) Deviation from the interpolation for-
mulas for eij versus pair-correlation coefficients of the random
ScAlN supercells up to the 5th shell.
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of the random supercells and their ability to yield PZ
coefficients close to the average values then explains, at
least in part, why SQSs are not able to produce represen-

tative results consistently. Note that this is in contrast
to the situation for elastic constants, where SQSs yield
values in good agreement with average results (Fig. 6).
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